

Stephen De Witte, P.E.

Partnering acec-ly:fhwa.lyto LISTEN, I'M ALL IN FAVOR OF REDUCING CAR ACCIDENTS, I THINK ARSON IS A SERIOUS CRIME, AND I'M A BIG FAN OF THOSE "NO ANIMALS WERE HARMED" DISCLAIMERS AT THE END OF MOVIES...

KYTC Mission

Mission

Partnering Partnering acec-ly:fhwa.lyth

To provide a safe, efficient, environmentally sound and fiscally responsible transportation system that delivers economic opportunity and enhances the quality of life in Kentucky.

DDSA Implementation Plan

Data Driven Safety Analysis Implementation Plan

- Version 1 Released Late Aug.
- Living Document

- Roadmap for how Data Driven Safety is happening in Kentucky
- Data, Project Development, PD&P, Tools, Training, Marketing

Maintenance and Operations

Modify existing conditions to maintain and improve safety and efficient operations

- Identify crash patterns at existing locations
- Evaluate safety effectiveness of potential countermeasures
- Modify policies and design criteria for future planning and design

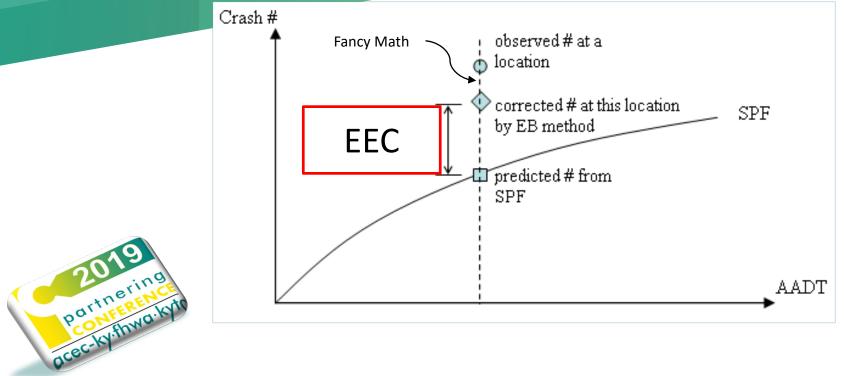
Construction

Build projects

- Evaluate how performance measures are impacted by design changes and construction
- Assess potential change in crash frequency in work zone

Planning

Identify needs and program projects


- Identify sites most likely to benefit from safety improvements
- Identify targeted crash patterns for the network
- Prioritize expenditures for efficiency

Design

Identify alternatives, choose and design preferred solutions

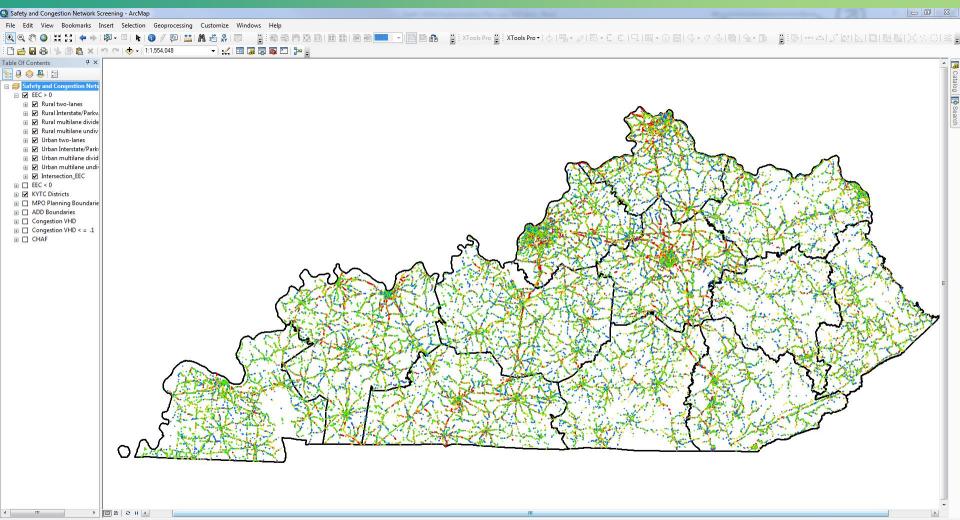
- ✤ Identify targeted crash patterns for projects
- Evaluate countermeasures' costs and effectiveness
- Compare change in crash frequency to predict safety effect of alternatives

Excess Expected Crashes

Planning Focuses

Network Screening

- Project Prioritization (SHIFT)
 Draft Purpose & Need / Project Types
 Planning Studies
 - Examples
 - Implementation Timeline




Network Screening

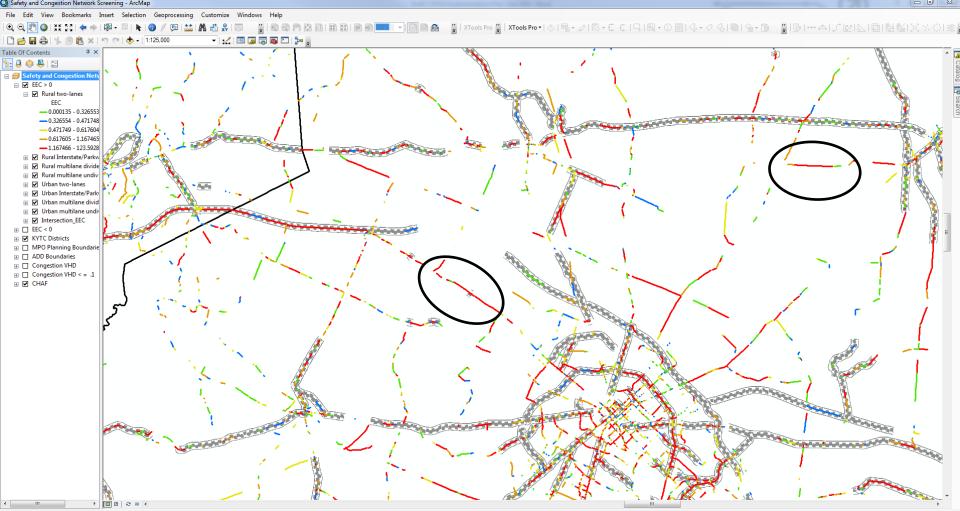
- GIS-based tool developed in tandem with SHIFT 2020
- Shows EEC and VHD (congestion) values
- Working on online GIS-based tool

In Partnership With

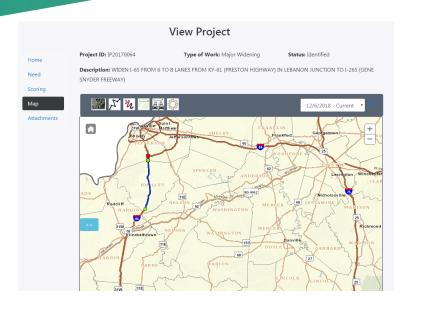
Groundbreaking by Design.

Middletown-Simpsonville Needs Analysis Study

							Existing Conditions									Improvement Info					
Project ID	Other IDs	County	Route	BMP	EMP	Description of Improvement	Conceptual Project for Modeling & Cost Estimate	Other Notes	ADT	2018 % Trucks	V/C	Delay	<u>2040 No Build</u> ADT LOS V/C	7/15-6/18 Crashes (F/I/PDO)	High CCRF Site s	<u>EEC</u> Seg Int	Substandard Geometry	2040 Build Summary	Project Development Status	Total Remaining Cost Estimate	Bike/P
Statewide Signific	cance (Interstates &	NHS Rout	æs)																		
HAF IP20160174	Item 5-537.00/01/02 MTP # 958	Jefferson	F265	23.409	34.727	SIX LANE PRIORITY SECTION OF I-265 BETWEEN TAYLORSVILLE ROAD AND I-71.		Priority 1-2-4 in 2015 Programming Study. Ranked 1st statewide in 2018 SHIFT.	48,500- 86,500	10-11		L-H MH 2.6 mi H 0.2 mi	56,000- 95,000			2.6 mi 0 int	N/A	64,000-115,000 ADT -7,027 VHT +11,242 VMT	Design ongoing	\$147,310,000	N/A
CHAF IP20150080	Item 5-558.00 MTP # 959	Je ffer son	1-265	17.300	23.100	IMPROVE SAFETY AND REDUCE CONGESTION ON I-265 FROM US- 31E (BARDSTOWN RD) TO KY-155 (TAYLORSVILLE RD).	Major Widening (six lanes)	Priority 5 of 5 in 2015 Programming Study. Ranked 29th statewide in 2018 SHIFT.	66,000- 71,000	9-12		ML-M	77,000 83,000			2.6 mi 0 int	N/A	87,000-93,000 ADT -2,716 VHT +6,774 VMT	Pre-de sign	\$85,730,000	N/A
HAF IP20150184	Item 5-549.00/.01		1-265	24.600	26.400	RECONSTRUCTION OF THE I-265/I-64	4 Reconstruct I-265/I-64	Priority in 2015 Programming Study.	48,500	10.6		L-H MH 0.7 mi	56,000- 111,000		1	3.4 mi		57,000-111,000	Design ongoing	\$41,330,000	N/A
.NAF IP20150184	MTP # 179	Jefferson	1-64	1-64 18.600	19.200	INTERCHANGE. (2016BOP)	Interchange	Ranked 33rd statewide (#5-549) and 22nd regionally (#5-21.2) in 2018 SHIFT.	60,000- 95.000	9.5		H 0.3 mi				0 int	N/A	-347 VHT -3,001 VMT	Design ongoing	541,550,000	N/A


- Study initiated in September 2019 with Qk4
- Prioritize existing projects and aid in decision-making process
- Used network screening tool as part of existing conditions and gap analysis

Network Screening -Future


Identify gaps not covered by ongoing projects before SHIFT 2022
 Work with HDOs, ADDs, and MPOs to develop improvement options

5172236.304 3976834.724 Feet

Continuous Highway Analysis Framework (CHAF)

- Successor to PIF
- Much more interactive,
 - dynamic tool
- Interfaces with HIS, SHIFT, other databases
- Will pull CDAT outputs automatically, and update when SPFs are updated

Prioritization

Incorporate DDSA into SHIFT Process
 Use EEC instead of CRF for Safety Measure
 Benefit/Cost using Safety Benefit Factors

Statewide: 15%

Regional: 15%

 $\sum (EECs)_{\text{†scaled}}$

Measure	Description	Summary Method All crash data summarized over 5 yrs. 2013-2017	Source
EEC	Excess Expected Crashes	Expected Crashes – Predicted Crashes	Crash Database HIS

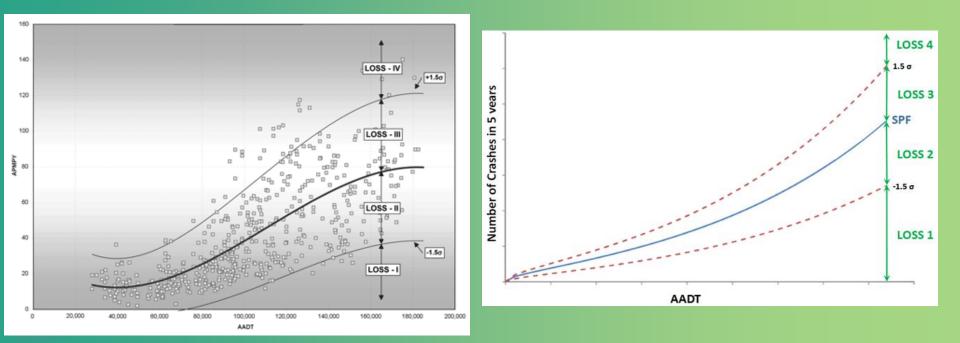
[†]Scaled - The percentile rank of the value. Converts value to score of 0 to 100.

0.5 X $\left(\frac{BTTS}{C_{FROJ}}\right)$ tScaled + 0.5 X Be	nefit / Cost Formulas										
Regional S	Score = 20% × (Benefit / Cost) Measure Score = 15% × (Benefit / Cost) Measure	(BCM) :									
0.5 X $\left(\frac{BTTS}{C_{PROJ}}\right)$ + Scaled + 0.5 X $\left(\frac{BSAF}{C_{PROJ}}\right)$ + Scaled											
Measure	Summary Method	Source									
BTTS: Travel Time Savings Benefit \$	(^{††} Travel Time Savings) X (sum of delay costs by vehicle type)	KY Statewide Model HCM Method Jackelope HIS									
BSAF: Safety Benefit \$	(Safety Benefit Factor of improvement type) X (crash costs over last 5 yrs, 2013-2017)	Crash Database CHAF									
CPROJ: Family Project Cost Phases R,U & C	Summary	SYP CHAF									

[†]Scaled - The percentile rank of the value. Converts value to score of 0 to 100.

^{††} Travel Time Savings for major improvements were calculated using the Kentucky Statewide Model. Travel Time Savings for smaller improvements are calculated via HCM iterative formulas.

Safety Benefit Factors


 Derived from Kentucky-specific Crash Modification Factors (CMFs)
 Tied to improvement type in CHAF
 No data for constructing new roadways

$$CMF_{PL} = \frac{(1 - SBF)}{100}$$

Install Two-Way Left Turn Lane	Add TWLTL to Two-Lane Road	0.72
Install Two-Way Left Turn Lane	Road Diet (4-Lanes to 2-lanes plus TWLTL)	0.63

Level of Service of Safety (LOSS)

Draft Purpose & Need

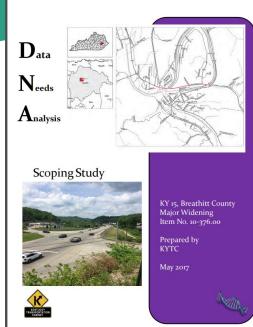
acec-k

Let the data drive the process

- "Safety" included immediately at LOSS 3 and 4
- Reduction of specific crash type/situation called out if prevalent
 - Draft until environmental document more data can always change things!

Planning Studies

Initiate the Project Development Process
 Can range from small DNA to large IJS
 ~2.5 Levels of Safety Analysis



Planning Level 1

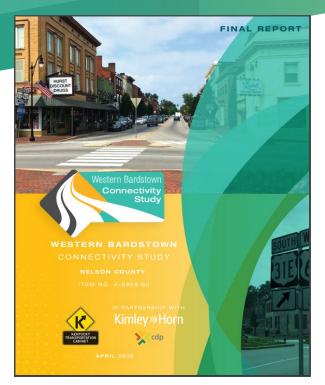
- Use of CDAT to derive EEC and crash type information
- Every study and every potential project gets this look
 - Included for all CHAFs and DNA Studies.

Data Needs Analysis (DNA)

High-level planning document
Typically completed before design advertisements with no prior planning
Preliminary Purpose & Need defined, with "safety" included at LOSS 3 or 4.

Planning Level 2

- Uses CDAT to derive EEC and crash type information
- Uses EEC as a screening tool to hone in on potential issues
- Uses CMFs/SBFs for basic benefit-cost analysis of potential improvement options
- Scoping/Corridor Studies, SUAs, SWCP


Basic Benefit-Cost

- Use KY Comprehensive Costs by Crash Severity and Crash Reduction Factors
- All-phase planning-level cost estimate
- Travel Time Savings if applicable
- No Discount rate

COST PER	Х	NUMBER REPORTED	=	ESTIMATED COST							
Fatalities											
\$10,080,000	Х	763	=	\$7,691,040,000							
Incapacitating	g Injuries										
\$1,100,000	Х	3,114	=	\$3,425,400,000							
Non-Incapacitating Injuries											
\$304,000	Х	12,493	=	\$3,797,872,000							
Possible Injur	ies										
\$140,000	Х	21,740	=	\$3,043,600,000							
Property Dam	age Only	,									
	Х	114,780	=	\$975,630,000							

The COMPREHENSIVE COST (\$18.9 billion) was derived from the fol-

Scoping/Corridor Studies

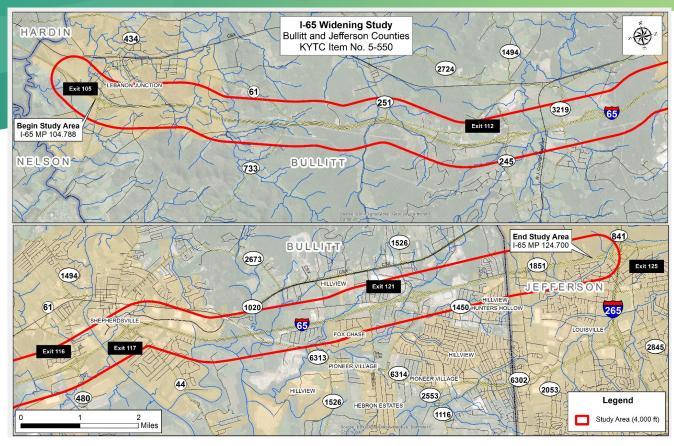
In-depth examination of potential project area

Existing Conditions, Environmental

Analysis, Improvement Options,

Public Involvement

EEC for screening and CMF/SBF for benefit-cost of improvement options


Small Urban Area (SUA) Study

Paducah Small Urban Area Study McCracken County KYTC Item No. N/A

Thorough examination of network serving population between 5k and 50k
 Long- and short-term improvements on state, local, private roadways
 Network screening with EEC, and basic benefit-cost for improvement options

EEC Replacing CRF Example

EEC Replacing CRF Example

Crash Analysis

Segment	County	Туре	Beg MP	End MP	Existing AADT	3-year Observed Crashes	KY SPF*	Estimate of Expected Crashes	Excess Expected Crashes
South of Exit 105	Bullitt	Rural	103.3	105	65,779	37	45	40	-3
Between Exits 105 & 112	Bullitt	Rural	105	112	64,018	197	182	208	-11
Between Exits 112 & 116	Bullitt	Rural	112	116	81,054	244	128	247	-3
Between Exits 116 & 117	Bullitt	Urban	116	117	95,760	91	37	91	0
Between Exits 117 & 121	Bullitt	Urban	117	121	94,062	257	310	262	-5
North of Exit 121	Jefferson	Urban	121	124.7	110,103	250	352	255	-5

* KTC SHIFT Safety Performance Functions (SPFs) and Adjustment Factors

Positive Excess Expected Crashes (EEC) indicates a potential for improvement:

• Because we are getting negative EEC's, this section of I-65 is experiencing fewer crashes than the model predicts.

CMF and Benefit-Cost Example

Kentucky Transportation Cabinet

KYTC wants

Intersection Improvements at University Boulevard Intersection

mmmim

.....

University

Blvd

Avenue of Champions

11

New Right-Turn Lane Vehicle CMF = 0.92 Crash Type All Crash Severity All Bike/Ped CMF = N/A

Creason Street

Russellville Road

New Left-Turn Lane Vehicle CMF = 0.76 Crash Type All Crash Severity All Bike/Ped CMF = N/A

Relevant Crash History For Improvement Type

TERINA STR

New Right-Turn Lane Rear End = 6 Sideswipe Same Direction = 1 Angle = 3 Total Crashes = 10 Crash Severity = 1 Injury, 9 PDO

Russellville Road

Fannes -

Creason Street

1824552

-

Crash Analysis (2014-2016)

Crash Type:

- Angle
- O Backing
- Head On
- Opposing Left Turn
- Rear End
- D Rear to Rear
- Sideswipe

Single Vehicle
Source: Kentucky State Police

New Left-Turn Lane Rear End = 7 Sideswipe Same Direction = 6 Angle = 6 Total Crashes = 19 Crash Severity = 19 PDO

University B

-

Avenue of Champions

Roundabout Improvement at University Boulevard Intersection

Avenue of Champions

Convert Signalized Intersection to Roundabout CMF = 0.52 Crash Type All Crash Severity Injury Bike/Ped CMF = No Reliable CMF

Russellville Road

Creason Street

University Blv

Avenue of s

lersity.

-

-

Convert Signalized Intersection to Roundabout Total Crashes = 86 Crash Severity = 8 Injury, 78 PDO

Russellville Road

88859²

558

Creason Street

31.95⁵00.97(558)

Proto Bo

Crash Analysis (2014-2016) Crash Type:

- Angle
- Backing 0
- \cap Head On
- **Opposing Left Turn**
- Rear End \cap
- Rear to Rear Ο
- Sideswipe

Single Vehicle Source: Kentucky State Police

CMF and Benefit Cost Example

Intersection Improvements:

Location	Improvement	CMF	Cr	ashes (2	008-20	17)	Cost	per Crash		10-Yr Benefit	
Location	improvement	CIVIF	Fatal	Injury	PDO	Total	Fatal	Injury	PDO	10-11 Benefit	
University Blvd. Intersection	New left-turn lane	0.76	0	3	49	52	\$10,080,000	\$274,905	\$8,500	\$297,900	
Oniversity Bivd. Intersection	New right-turn lane	0.92	0	2	19	21	\$10,080,000	\$274,905	\$8,500	\$56,900	
Russellville Rd.	Install sidewalk (to avoid walking along roadway)	0.35	0	2	1	3	\$10,080,000	\$274,905	\$8,500	\$362,900	
										\$717,700	

Roundabout Improvement:

Location	Improvement	CMF	Cra	ashes (20	008-20	17)	Cost	10-Yr Benefit			
Location	improvement	CIVIF	Fatal	Injury	PDO	Total	Fatal	Injury	PDO	10-III Bellent	
University Blvd. intersection	Convert signalized intersection	0.52	0	17	192	209	\$10,080,000	\$274,905	\$8,500	\$3,026,600	
Russellville Rd.	Install sidewalk (to avoid walking along roadway)	0.35	0	2	1	3	\$10,080,000	\$274,905	\$8,500	\$362,900	
										\$3,389,500	

CMF and Benefit Cost Example

			Russellvil	le Road (US	68X and US	231X) Plannir	ng Stu	dy						
				Evaluation	Matrix and Co	ost Estimates								
	Traffic at Russellville Rd / University Blvd Intersection Year 2018 PM Peak Hour Year 2040 PM Peak Hour				Bike/Ped F Russelvi		2018 Co	st Estin	nates (millions)	10 Year Benefit-Cost Ratio (BCR)				
Alternative Description	Intersection Delay (sec)	Intersection LOS ¹	Intersection Delay (sec)	Intersection LOS ¹	Pedestrain Accomodations	Bicycle Accomodations	Design	Right-of- Way	Utility	Construction	Total	Crash Reduction (millions)	Congestion Relief ² (millions)	BCR
No-Build	76	E	117	F	No	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Alternative 2 Intersection Improvements at University Boulevard and Sidewalk on Russellville Road	36	D	74	F	Yes	No	\$0.2	\$2.0	\$0.5	\$1.0	\$3.7	0.7	11.0	3.16
Alternative 3 Roundabout at University Boulevard with Signalized Midblock Pedestrian Crossing and Sidewalk on Russellville Road	27	D	50	E	Yes	No	\$0.3	\$2.4	\$1.9	\$2.5	\$7.1	3.4	7.5	1.54

Statewide Corridor Plan (SWCP)

- New initiative to identify and examine KY's significant corridors, with a future plan for each
- Focus on mobility and accessibility
- EECs for each corridor identified
 - Benefit-Cost for high priority corridors

Planning Level 2+

Further planning phase analysis
 Interchange studies (IJS/IMR)
 IHSDM, ISATe tools used
 Predictive safety and benefit-cost

Timeline for Delivery

acec-k

EEC Interactive GIS Tool: Late Fall 2019 Purpose and Need Guidelines:

End of September, 2019

Timeline for Delivery

artherin

Ocec-ky.

SHIFT:

Completed for SHIFT 2020, Adjustments by Summer 2021 for next cycle

Planning Studies:

Implemented

Questions?

Stephen G. De Witte, P.E. KYTC Central Office Planning

Stephen.DeWitte@ky.gov

(502) 782-5056

